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Abstract
We use the equations of motion of non-interacting electrons in a one-
dimensional system to numerically study different aspects of charge pumping.
We study the effects of the pumping frequency, amplitude, band filling and finite
bias on the charge pumped per cycle, and the Fourier transforms of the charge
and energy currents in the leads. Our method works for all values of parameters,
and gives the complete time dependences of the current and charge at any site of
the system. Our results agree with Floquet and adiabatic scattering theory where
these are applicable, and provides support for a mechanism proposed elsewhere
for charge pumping by a travelling potential wave. For non-adiabatic and strong
pumping, the charge and energy currents are found to have a marked asymmetry
between the two leads, and pumping can work even against a substantial bias.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The idea that periodically oscillating potentials applied at certain sites of a system can transfer
a net charge per cycle between two leads (which are at the same chemical potential) has been
studied for several years, both theoretically [1–18] and experimentally [19, 20]. Theoretical
studies have used adiabatic scattering theory [5, 6], Floquet scattering theory [8, 9] and
variations of the non-equilibrium Green function (NEGF) formalism [10–12]. While Floquet
scattering theory and the NEGF formalism work for potentials oscillating with any frequency,
adiabatic theory works only for low frequencies. All these methods provide expressions for
the charge transferred per cycle. However, it is not easy to obtain from these methods the
current and charge at any site as a function of time. Detailed information like this may shed
light on the mechanism of charge pumping, for instance, by a travelling potential wave which
has been observed in several experiments [20]. Further, the effects of a finite bias between the
leads are not easy to study analytically unless the pumping is adiabatic [21]. In this paper, we
present a numerical method for obtaining all this information for a system of non-interacting
electrons. Our method is based on solving the equation of motion (EOM) of the density matrix
of the system [22–24]. (For time-independent Hamiltonians, this method reproduces the results
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obtained by the NEGF formalism [25].) We will see that the time dependences of the currents
and charges depend significantly on the amplitude and frequency of the pumping. We will show
that there is a marked asymmetry in the Fourier transforms of the charge and heat currents in the
two leads if the pumping amplitude and frequency are large. We will also show that pumping
can work even if there is a substantial bias opposing it.

As a simple model for studying charge pumping, we consider a one-dimensional system
consisting of two semi-infinite leads a = L, R (denoting left and right) and a finite region
W (wire) lying between the two. We will model all three regions by lattices with electrons
governed by a one-channel tight-binding Hamiltonian with the same hopping amplitude −γ on
all bonds, namely,

Ĥ0 = −γ
N−1∑

n=1

(c†
n+1cn + c†

ncn+1), (1)

where N is the total number of sites. We will consider spinless electrons here; the current of
spin-1/2 electrons is simply twice that of spinless electrons for non-interacting electrons. The
dispersion of the electrons in the leads is Ek = −2γ cos k, where k lies in the range [−π, π].
(We are setting the Planck constant h̄ and the lattice spacing equal to unity). The two leads are
assumed to have the same chemical potential μ and temperature T . Time-dependent potentials
will be applied to some sites of the wire; that part of the Hamiltonian is given by

V̂ (t) =
∑

n

Vn(t)c
†
ncn, where Vn(t) = an cos(ωt + φn). (2)

The sites with these potentials will be collectively called the scattering region.
In sections 2 and 3, we will describe how Floquet scattering theory and adiabatic scattering

theory respectively can be used to study charge pumping in the above model. In section 4,
we will describe the EOM method for numerically studying various quantities of interest.
Numerical results will be presented in section 5. In section 6, we will summarize our results
and point out some problems for future studies.

2. Floquet scattering theory

Briefly, Floquet scattering theory works as follows [8, 9]. The incoming electrons of energy
E0 gain or lose energy in quanta of ω on interacting with the scattering region. Hence, the
outgoing states are characterized by energies E p = E0 + pω, where p = 0,±1,±2, . . .; the
energies with p �= 0 are called the Floquet side bands. The effect of the scattering region
can be described by a Floquet scattering matrix Sαβ(E p, E0), which is the amplitude for an
electron with energy E0 entering through lead β to leave with energy E p through lead α. In the
leads, the propagating modes have energies lying within the bandwidth [−2γ, 2γ ]; only these
modes can contribute to charge pumping. States with energies lying outside the bandwidth
have wavefunctions which decay exponentially into the leads and hence do not contribute to
charge transfer. The wavefunction of an electron coming from the left lead with an energy E0

and wavenumber k0 (with E0 = −2γ cos k0) is given by

ψ(n) = ei(k0n−E0t) +
∑

p

rpei(−kp n−E pt), (3)

at a site n far to the left of the scattering region, and

ψ(n) =
∑

p

tpei(kp n−E pt), (4)

far to the right of the scattering region, where E p = −2γ cos k p, and the sums over p run over
values such that E p lies within the bandwidth of the leads. The quantities rp and tp denote
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reflection and transmission amplitudes in the different side bands; they respectively denote
the elements SL L (E p, E0) and SRL(E p, E0) of the Floquet scattering matrix, where L and R
denote the left and right leads. Similarly, the wavefunction of an electron coming from the right
lead with an energy E0 and wavenumber k0 is given by

ψ(n) = ei(−k0n−E0t) +
∑

p

r̄ pei(kp n−E pt), (5)

far to the right of the scattering region, and

ψ(n) =
∑

p

t̄pei(−kp n−E pt), (6)

far to the left of the scattering region. The reflection and transmission amplitudes are found
by writing down the wavefunctions in the scattering region, and matching coefficients of terms
having the same time dependence (e±iE pt ) in the Schrödinger equation at different sites. If the
oscillating potentials are weak, the reflection and transmission amplitudes decrease rapidly as
|p| increases; at first order in the potentials, only p = ±1 contribute. The current in, say, the
right lead is then given by

IR = q
∫ 2γ

−2γ

dE0

2π

[
v1

v0
(|t1|2 + |r̄1|2){ f (E0, μ, T )− f (E1, μ, T )}

+ v−1

v0
(|t−1|2 + |r̄−1|2){( f (E0, μ, T )− f (E−1, μ, T )}

]
, (7)

where f (E, μ, T ) = 1/[e(E−μ)/kBT + 1] is the Fermi function, and vp = 2γ sin k p is the
velocity. In the limit ω → 0, we have f (E±1, μ, T )− f (E0, μ, T ) = ±ω∂ f (E0, μ, T )/∂E0,
and vp/v0 → 1. Finally, at zero temperature, ∂ f (E0, μ, 0)/∂E0 = −δ(E0 − μ).

3. Adiabatic scattering theory

In the limit of the pumping frequency tending to zero, the charge transport can be related to
the ‘frozen’ scattering matrix S [2, 3, 5]. The average pumped current in this limit is found to
be proportional to the frequency ω, and therefore the charge pumped per cycle (of time period
2π/ω) is independent of ω. If the scattering region is connected to leads which are at the same
chemical potential and zero temperature, the infinitesimal charge flowing from that region to
the ath lead is given by

dQa = iq

2π
(dS S†)aa, (8)

where q is the electron charge, and the ‘frozen’ S-matrix is evaluated at the Fermi energy
EF = −2γ cos kF = μ. Equation (8) can be used to relate adiabatic scattering theory to a
geometric description of charge transport [3]. For weak oscillating potentials Vn as given in
equation (2), one finds that the charge entering lead a per cycle is given by

�Qa = − q

π

∑

n>m

Im
[( ∂S

∂Vn

∂S†

∂Vm

)

{Vm}=0

]

aa

∮
dVnVm, (9)

where the integral is done over one cycle of the oscillation. Equation (9) is a generalization
of the formula in [3] and can be derived from equation (8) by Taylor expanding the
scattering matrix to first order, S(Vm) = S(0) + ∑

n Vn(∂S/∂Vn){Vm}=0. In the case of two
weak oscillating potentials V1(t) and V2(t), equation (9) shows that the pumped charge is
proportional to the area in the space of the parameters (V1, V2).
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4. Equation of motion method

For a system with a finite number of sites, we study the time evolution as follows. The density
matrix of the system evolves according to the EOM

ρ̂(t + dt) = e−iĤ (t) dt ρ̂(t)eiĤ (t) dt , (10)

where Ĥ(t) = Ĥ0 + V̂ (t) is given in equations (1) and (2). The current across any bond is then
obtained by taking the trace of the appropriate current operator with ρ̂. The current operator on
the bond from site n to site n + 1 and its expectation value at time t are given by

ĵn+1/2 = iqγ (c†
n+1cn − c†

ncn+1),

and jn+1/2(t) = Tr(ρ̂(t) ĵn+1/2) = iqγ [ρ̂n,n+1(t)− ρ̂n+1,n(t)]. (11)

The charge transferred between the right and left leads R and L between two times can be
found either by integrating the above expression in time, or by taking the operator

�Q̂ = q

2

[
∑

n∈R

c†
ncn −

∑

n∈L

c†
ncn

]
, (12)

and computing Tr(ρ̂(t)�Q̂) at the two times; these methods give the same result for the charge
transferred in a cycle. Similarly, one can compute the energy current across any site n; the
corresponding operator and its expectation value are given by

ên = −iγ 2(c†
n+1cn−1 − c†

n−1cn+1),

and en(t) = Tr(ρ̂(t)ên) = −iγ 2[ρ̂n−1,n+1(t)− ρ̂n+1,n−1(t)], (13)

in a region where the on-site potential Vn is zero [22]. At zero temperature, the charge current
is carried by electrons whose average energy is given by EF = μ; the difference between the
energy current e and the charge current j multiplied by μ gives the heat current [5, 8]. We
define the heat current at site n to be en − (μ/2)( jn−1/2 + jn+1/2).

In all our calculations, we take the left and right leads to have NL sites each and the wire in
the middle to have NW sites; the total number of sites is N = 2NL + NW . We set the hopping
amplitude γ = 1. For calculations in which the chemical potential is the same in the two leads,
we take the density matrix at time t = 0 to be given by that of a single system governed by the
Hamiltonian H0 in equation (1) with N sites, chemical potential μ and temperature T (which
we will take to be zero). If Eα and ψα(n) are the eigenvalues and eigenstates of the Ĥ0 (α and
n label the states and sites respectively), the initial density matrix is given by

ρ̂mn(0) =
∑

α

ψα(m) ψ
∗
α (n) f (Eα, μ, T ). (14)

We then evolve the density matrix in time and compute the current and charge transferred using
equations (10)–(12).

We will also be interested in calculations in which the chemical potentials are not the
same in the two leads; suppose that they are given by μL and μR in the left and right leads
respectively. In this case, we begin by setting the hopping amplitude to be zero on one of the
bonds in the middle of the system; we then compute the density matrices ρ̂L and ρ̂R in the left
and right parts of the system by restricting equation (14) to the left and right leads respectively.
The complete density matrix ρ̂(0) is then given by the direct sum of ρ̂L and ρ̂R . We then set the
hopping amplitude on that bond to unity, and evolve the density matrix with the Hamiltonian
Ĥ (t) as usual.

We should note that although the net charge transferred per cycle is the same across all
bonds, the detailed time dependence of the charge transferred looks different for different
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Figure 1. Charge transferred (in units of q) per cycle from left to right versus the Fermi wavenumber
for an oscillating potential at two sites, with a1 = a2 = 0.2, φ2 −φ1 = π/2, and ω = π/10 (circles)
and π/5 (stars) for a system with 202 sites (NL = 100). The solid line shows the results obtained
using second-order Floquet scattering theory in the limit ω → 0.

bonds. (This will become particularly clear in a later figure.) Another point to note is that the
finite length of the leads (with NL sites) implies that the system has a return time TR equal to
2NL/vF where the Fermi velocity vF = 2γ sin kF [23]; this is the time required for an electron
to travel from the wire in the middle to the end of either of the two leads and then return to
the wire. The numerical results can be trusted only for times which are less than TR . Finally,
there are transient effects which last for one or two cycles; the effects of different choices of
the initial density matrix get washed out after this transient period. All the numerical results
presented below are therefore taken from times which are larger than the transient time but
smaller than TR .

5. Numerical results

5.1. Effect of band filling

Figure 1 shows the charge transferred versus the Fermi wavenumber kF as obtained by the EOM
method when oscillating potentials are only applied at two neighbouring sites. If the amplitudes
a1 and a2 are much smaller than vF, one can use Floquet scattering theory to second order in
the an to find the charge transferred per cycle from left to right in the limit ω → 0,

�Q = −q
a1a2

γ 2
sin(φ2 − φ1)

cot kF

2
. (15)

The comparison between the results obtained numerically for two different pumping
frequencies and the analytical expression given in equation (15) is also shown in figure 1. We
see that the numerical results and second-order Floquet scattering theory match near the middle
of the band, kF = π/2, but the agreement becomes poor near the band edges kF = 0 and π .
This discrepancy is due to the expansion parameter an/vF becoming large near the band edges;
hence second-order perturbation theory breaks down, and equation (15) is no longer valid. We
can also define an adiabaticity parameter ε = (d/vF)/(2π/ω) which is the ratio of the time
taken for an electron with Fermi velocity vF to traverse the scattering region of length d to the

5
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time period of the oscillating potentials; the adiabatic limit corresponds to ε → 0. In our case,
d = 1 (the oscillating potentials are at neighbouring sites), while vF = 2 at kF = π/2 (half-
filling). Even for the largest frequency of ω = π/5 used in figure 1, we see that ε = 1/20.
This is why the two curves with finite ω collapse onto the results of Floquet scattering theory
near kF = π/2; this may not happen if ε is of order 1, i.e., if either ω or d becomes larger.

Figure 1 shows that the charge transferred goes through an extremum as kF approaches the
band edges (0 or π ). This can be understood as follows. For a weak potential (a1, a2 small),
only the first Floquet side bands (p = ±1) contribute to the current. From the structure given
in equation (7), one can then see that, at zero temperature, the current gets a contribution only
from electrons which lie within the energy range [EF − ω, EF] initially and get excited to
the energy range [EF, EF + ω] finally. The number of states lying within these ranges starts
decreasing when one gets very close to the band edges, namely, when EF − ω goes below
the bottom end of the band, or EF + ω goes above the top end. (We recall that the band has
a finite width going from −2γ to 2γ .) Hence the magnitude of the current starts decreasing
when EF − ω falls below −2γ or when EF + ω goes above 2γ . Qualitatively, this is what one
observes in figure 1; the charge transferred goes through an extremum when EF = −2γ kF gets
within a distance of ω from the top end or the bottom end of the band. The extremum occurs
closer to the band edge if ω is smaller (π/10 instead of π/5).

Note that the Hamiltonian in equations (1) and (2) is invariant under the particle–hole
transformation cn → (−1)nc†

n and t → t + π/ω, but the current operator changes sign. Hence
the charge transferred is antisymmetric about kF = π/2 (half-filling), as we can see in figure 1;
hence the pumped charge is exactly zero at half-filling for any value of the frequency ω.

5.2. Travelling potential wave

Equation (15) can be generalized to the case in which there are oscillatory potentials at several
sites as given in equation (2). In the limit ω → 0, the use of Floquet scattering theory up to
second order in the amplitudes gives the charge transferred per cycle from left to right to be

�Q = −q
∑

n>m

anam

γ 2
sin(φn − φm)

sin[2kF(n − m)]
4 sin2 kF

. (16)

Since the amplitudes an are positive, equation (16) suggests that the charge transferred will be
maximized if one chooses φn − φm to be in phase with 2kF(n − m) for all pairs of sites n and
m. A simple way to ensure this is to choose φn = 2kFn. This is the choice of the phases φn

made in figures 2–6, all of which involve systems with oscillating potentials applied to eight
consecutive sites, with the same amplitude a at all those sites. Hence the potential at site n takes
the form a cos(ωt + 2kFn); this describes a potential wave travelling with a velocity ω/2kF.

Figures 2 and 3 compare the cases of weak and strong pumping. The Fourier transform
of the current (computed at the ninth bond to the right of the scattering region) shows that, for
weak pumping (a = 0.2), only a small number of Floquet side bands contribute to the current,
while for strong pumping (a = 2), a large number of Floquet side bands contribute. The Fourier
transform of the current therefore provides a way of distinguishing between strong and weak
pumping.

As an application of the EOM method to recent observations of charge pumping by a
travelling potential wave [15, 20], we present in figure 4 the charge transferred versus time in
one cycle in the strong pumping regime, as obtained by the EOM method for ω = π/100 and
π/200, and from equation (8) for the adiabatic case. We see that very little charge is transferred
in one part of the cycle, and a lot of charge is transferred in the other part; the reason for this
will become clear below. The charge transferred per cycle is about 1.4 for ω = π/100, 1.8 for

6
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Figure 2. Fourier transform of the current (in units of q) versus frequency for oscillating potentials
at eight sites, with a = 0.2, ω = π/10 and kF = π/4 for a system with 638 sites (NL = 315). The
left and right insets show the current and charge transferred versus time.
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Figure 3. Fourier transform of the current (in units of q) versus frequency for oscillating potentials
at eight sites, with a = 2, ω = π/10 and kF = π/4 for a system with 638 sites (NL = 315). The
left and right insets show the current and charge transferred versus time.

ω = π/200, and exactly 2 in the adiabatic case. In this model, therefore, the charge transferred
increases as the pumping becomes more adiabatic.

Figure 5 shows the density profile, Tr(ρ̂c†
ncn), in and on two sides of the scattering region at

eight equally spaced times in one cycle for the same parameters as in figure 4, with ω = π/200.
We see a larger number of electrons in the regions where the potential has a minimum; these
electrons move along with the potential minimum. The first six pictures in figure 5 show some
electrons (about 1.8 in number as indicated in figure 4) being transported by the potential
minimum from the right side of the scattering region to the left; during this period, very little
charge is transferred to or from the leads. The last two pictures in figure 5 show these electrons
being transmitted to the left lead, while some other electrons are entering the scattering region
from the right lead. These pictures illustrate the mechanism of charge transfer mentioned
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region (sites 1–8) at eight equally spaced times in one cycle, for potentials oscillating with a = 2,
ω = π/200 and kF = π/8 for a system with 1618 sites (NL = 805). The scale on the y-axis
indicates both the electron number and the potential (divided by 2) at each site.

in [20]. Note that charge gets pumped in this model even though the ‘frozen’ S-matrix is
almost perfectly reflecting at all times; the current would have been very small if the potential
wave had been stationary.

5.3. Asymmetry in charge and energy currents

Although the time-averaged current must be the same at all sites due to current conservation, the
fluctuations in the current need not be the same everywhere. This is illustrated in figures 6 and 7,
which show the currents at the tenth bond on the left and tenth bond on the right respectively
of the scattering region for a model with the same parameters as in figure 3. We see that the
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with 428 sites (NL = 210). The left and right insets show the current and charge transferred versus
time.
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Figure 7. Fourier transform of the current (in units of q) on the right of the scattering region versus
frequency for oscillating potentials at eight sites, with a = 2, ω = π/10 and kF = π/4 for a system
with 428 sites (NL = 210). The left and right insets show the current and charge transferred versus
time.

current is distinctly more noisy on the left. This is an effect of non-adiabaticity; we find that
it disappears in the limit ω → 0. Qualitatively, this asymmetry occurs because the potential
minimum ‘picks’ up electrons from the right lead, transports them through the scattering region
with a finite velocity given by ω/2kF, and finally ‘throws’ them into the left lead with that
velocity; the finiteness of this velocity may be responsible for the additional noise on the left.

The asymmetry can also be seen in the energy and heat currents [5, 8, 22] on the left and
right of the scattering region for the same model. Figure 8 shows the outgoing energy currents
eL and eR on the tenth site on the left and tenth site on the right respectively of the scattering
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μjR show the product of the chemical potential with the charge currents jL and jR on the left and
right. The inset shows the heat current on the left and right versus frequency; these are given by
eL − μjL and eR − μjR respectively.

region, and the product of the chemical potential μ with the outgoing charge currents jL and jR

on the left and right, all as functions of the pumping frequency ω (due to current conservation
in the steady state, jL = − jR). The differences between the two currents, namely, eL −μjL and
eR − μjR, give the heat currents on the left and right; these are shown in the inset of figure 8.
We see that the heat current on the left is significantly larger than on the right. We have not
attempted to determine quantitatively how the heat current varies with ω; the dependence is
known to be quadratic for small ω [5, 8].

We should emphasize here that our model has no mechanisms (such as electron–phonon
scattering) for heat dissipation in the leads. A real system will have such mechanisms, and the
heat currents calculated above will eventually get dissipated somewhere in the leads.

5.4. Effect of finite bias

We will now consider the effect of a finite bias on the current [21]. We take the chemical
potential in the left and right leads to be μL = μ + qV/2 and μR = μ − qV/2 respectively,
so that there is a bias of qV between left and right. The calculations are done as outlined
in section 4. Figure 9 shows the effect of a bias on the current for different frequencies for
the same model as in figure 3. As expected, the current from left to right increases with the
bias; however, the current continues to be negative (i.e., flows from right to left) for a range
of positive values of the bias. For a pumping frequency of ω = 2π/100 � 0.063, charge can
get pumped against an opposing bias of almost 0.9. We also observe a pronounced asymmetry
between positive and negative values of the bias, and the asymmetry increases with the pumping
frequency. Finally, note that the current is very small for small bias in the adiabatic limit; this
is because the scattering region is almost perfectly reflecting, as was mentioned earlier. In
the adiabatic limit, we have computed the current analytically using the Landauer–Büttiker
expression averaged over time [21]. Namely,

IR = q
∫ 2γ

−2γ

dE

2π
〈|SRL (E, t)|2〉t [ f (E, μ+ qV/2, T )− f (E, μ− qV/2, T )], (17)
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Figure 9. Current (in units of q) versus bias for different frequencies (with T = 2π/ω) for
oscillating potentials at eight sites, with a = 2 and kF = π/4 for a system with 428 sites
(NL = 210).

where 〈|SRL (E, t)|2〉t denotes the average over one time period of the ‘frozen’ transmission
probability from left to right for a given energy E .

6. Discussion

The EOM method provides a general way of computing the charge, energy and heat currents
as functions of time at different sites. A knowledge of the detailed space–time dependence of
currents and charges is often useful. For instance, our results give an insight into the mechanism
of charge pumping by a travelling potential wave which has been studied experimentally in
several systems [20]. Namely, there are more electrons in a region in which the potential
is attractive; as this region moves with time, so do those electrons. In this way, electrons
are transported across the wire from one lead to another. We find that non-adiabatic charge
pumping by a travelling potential wave produces an appreciable asymmetry in the Fourier
transforms of the charge and heat currents. It would be interesting to experimentally look
for an asymmetry in the Fourier transform of the current in the different systems where charge
pumping has been demonstrated.

The EOM approach is quite versatile and makes no assumptions about the ranges of
the different parameter values; the potentials and pumping frequency may be small or large,
and the potentials may vary with time in an arbitrary way, not necessarily being simple
harmonic or even periodic. The EOM method can also be used to study pumping at resonant
frequencies [8, 17].

It may be useful to compare the EOM and NEGF methods here. The EOM method requires
long leads in order to have a large return time, so that one has a reasonable window of time
to compute various quantities of interest. It can be extended to the case of two- and three-
dimensional leads [24]; however, the calculations involve significantly larger systems in those
cases. The NEGF formalism involves a self-energy �(E) which takes the leads into account
in an exact way; hence large leads do not need to be explicitly included in the numerical
computations. On the other hand, for time-dependent problems such as charge pumping, the
NEGF formalism must work with Green functions which would generally depend on two time
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arguments through the self-energy �(t, t ′). In contrast to this, the EOM approach is local
in time, and is therefore simpler to implement numerically. One can work with the NEGF
approach in the frequency domain, but that works well only if the potentials vary harmonically
in time. The EOM approach would work even for potentials which vary with time in an arbitrary
way.

It would be useful to extend the EOM method so as to take into account interactions
between the electrons [24]. For small pumping frequencies and weak interactions, one can use
an adiabatic Hartree–Fock approximation; for instance, an on-site Hubbard interaction of the
form Uc†

n,↑cn,↑c†
n,↓cn,↓ can be approximated by the time-dependent term U [ρ̂n,n,↑(t) c†

n,↓cn,↓+
ρ̂n,n,↓(t) c†

n,↑cn,↑]. However, this approximation will break down if the interactions are strong,
and also if the pumping frequency is large (in which case the effective on-site interaction may
not instantly follow the on-site densities). We would therefore require a different technique in
such situations. Recently, Tomonaga–Luttinger liquid theory has been used to study the effects
of oscillating potentials in interacting systems [26–29].
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